[Page 2}

Table 3

DOPPLER, VALVESUnitsFormula
Simplified BernouillimmHgP1 – P2 = 4 x (V2² – V1 ²)
Pressure to velocity gradientmmHgΔ P = 4 x (V2)²
Continuity equation (1)A1 x VTI1 = A2 x VTI2
Continuity equation (2)cm2A2 = A1 x VTI1 / VTI2
LVOT areacm2{[(LVOT diameter/2)²] x π}
LV SVmlLVOT VTI x LVOT area
LV SV indexml/m2LV SV / BSA
COmlLV SV x HR
CIml/m2CO / BSA
AV RVolmlLV SV – MV SV
AV RF%(AV RVol / LV SV) x 100
AV EROAcm2AV RVol / LVOT VTI
AV area (Continuity equation)cm2LVOT area x LVOT VTI / AV VTI
MA areacm2π x (MADmax / 2) x (MADmin / 2)
PHTmsDT x 0.29
MV area (PHT)cm2220 / PHT
MV area (PISA)cm2PISA area x Va / MV peak velocity
MV area (Continuity equation)cm2LVOT area x LVOT VTI / MV VTI
MV stroke volumemlMV VTIannulus x MA area
MV RVolmlMV SV – LV SV
MV RF%(MV RVol / MV SV) x 100
MV EROA (1)cm2MV RVol / MV VTIannulus
PISAareacm2(r2) x π x 2
PISA peak regurgitant flowml/sPISAarea x Va
PISA peak regurgitant gradientmmHg[(PRvel / 100)²] x 4
PISA EROAcm2PISA peak regurgitant flow / PRvel
PISA RVolmiPISA EROA x regurgitant VTI
PISA RF%(RV / SV) x 100
Table 3

References

(1) Enriquez-Sarano M, Seward JB, Bailey\ KR, Tajik AJ. Effective regurgitant orifice area: a noninvasive Doppler development of an old hemodynamic concept. J Am Coll Cardiol 1994;23:443–51.